CYCLOHEXANONE
CYCLOHEXANONE
CAS number: 108-94-1
EC Number: 203-631-1
Molecular Formula: C₆H₁₀O
Molecular Weight: 98.15
Cyclohexanone is the organic compound with the formula (CH2)5CO.
The molecule consists of six-carbon cyclic molecule with a ketone functional group.
This colorless oil has an odor reminiscent of that of acetone.
Over time, samples of cyclohexanone assume a yellow color.
Cyclohexanone is slightly soluble in water and miscible with common organic solvents.
Billions of kilograms are produced annually, mainly as a precursor to nylon.
Cyclohexanone is a colorless, flammable and corrosive liquid which dissolves in water, alcohol and ether.
Cyclohexanone is a synthetic organic liquid used primarily as an intermediate in the production of nylon.
Other minor applications of Cyclohexanone are as an intermediate, additive and solvent in a variety of products.
Occupational exposure levels have been measured in some industries
Most important use of Cyclohexanone is as a chemical intermediate in the production of Adipic Acid and in the manufacturing of Caprolactam.
Cyclohexanone is also used as a solvent and thinner for lacquers, especially those containing nitrocellulose or vinyl chloride polymer and copolymer resins including polyvinyl chloride and methacrylate ester polymers.
Cyclohexanone is an excellent solvent for DDT and organic phosphorus insecticides and pesticides.
Cyclohexanone is used as a sludge solvent in oil for piston type aircraft lubrication.
What is Cyclohexanone?
Cyclohexanone (also known as oxocyclohexane, pimelic ketone, cyclohexyl ketone, and CYC) is a clear oily liquid that has a colourless to light yellow tinge and a pungent odour.
Cyclohexanone is a sixcarbon cyclic molecule belonging to the class of cyclic ketones (organic compounds) with the formula C6H10O.
Cyclohexanone is slightly soluble in water, completely miscible with common solvents and reacts with oxidants such as nitric acid.
Cyclohexanone occurs naturally in crude oils and is also produced synthetically, in large quantities, as it is a key intermediate in the production of nylon.
Cyclohexanone uses:
Cyclohexanone uses in industry
Cyclohexanone has many industrial uses, primarily as an industrial chemical and chemical intermediate in the production of specific target molecules.
In fact, the consumption of cyclohexanone is linked almost entirely to the nylon industry with derivatives oxidised to produce adipic acid and caprolactam, which are precursors for nylon 6.
Up to 70% of the world’s caprolactam is produced via cyclohexanone.
Other cyclohexanone derivatives are used for the synthesis of pharmaceuticals, dyes, herbicides, pesticides, plasticisers, and rubber chemicals.
Additional industry uses of cyclohexanone include as an adhesive, fuel, paint and coating additive and laboratory chemical.
Cyclohexanone is used as a solvent for lacquers, paints, resins, degreasers, spot removers, polymers, copolymers, waxes, crude rubber, cellulose acetate, the manufacturing of herbicides and anihistamines.
Consumer uses of Cyclohexanone:
Cyclohexanone is found in various consumer products including in adhesives, paints, automotive, cleaning and furnishing care products, electronics, and photo chemicals.
Cyclohexanone is mostly captively consumed, either isolated or as a mixture, in the production of nylon intermediates (adipic acid and Caprolactam).
Around 4% is consumed in markets other than nylon, such as solvents for paints, dyes and pesticides.
Cyclohexanone is also used in the manufacture of pharmaceuticals, films, soaps and coatings.
Cyclohexanone is produced from either phenol or cyclohexane.
Fibrant masters technologies that use any of these feedstocks It has developed a unique technology portfolio to secure a reliable and high quality raw material supply to its Caprolactam units.
Cyclohexanone is produced by selective vapour phase hydrogenation of Phenol.
A specially developed Palladium-based catalyst and an advanced process technology facilitate the manufacturing of a product with excellent quality parameters.
Cyclohexanone is transported in road tank cars, containers and railway tank wagons.
Cyclohexanone (also known as oxocyclohexane, pimelic ketone, ketohexamethylene, cyclohexyl ketone or ketocyclohexane) is a six-carbon cyclic molecule with a ketone functional group.
Cyclohexanone is a colorless, oily liquid with an acetone-like smell.
Applications of Cyclohexanone:
-Raw material for caprolactam, adipic acid and nylon
-Retarder thinner (celluloid, fat, wax, rubber, synthetic resin, resin lacquer, etc.)
-Remover for paint and varnish
-Chemical synthesis
-Magnetic tapes
-Manufacturing of dyestuffs
-Manufacturing of fibres
-Manufacturing of herbicides
-Manufacturing of peroxides
-Manufacturing of pharmaceutical agents
-Manufacturing of plastics
-Manufacturing of sedatives and soporifics
-Manufacturing of textile dyestuffs
-Manufacturing of textiles dyestuffs
-Optical brighteners
-Pesticides
-Polymer auxiliaries
-Solvents for polymeres
-Textile dyestuffs
Production of Cyclohexanone:
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts:
C6H12 + O2 → (CH2)5CO + H2O
This process co-forms cyclohexanol, and this mixture, called “KA Oil” for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
The oxidation involves radicals and the intermediacy of the hydroperoxide C6H11O2H.
In some cases, purified cyclohexanol, obtained by hydration of cyclohexene, is the precursor.
Alternatively, cyclohexanone can be produced by the partial hydrogenation of phenol:
C6H5OH + 2 H2 → (CH2)5CO
This process can also be adjusted to favor the formation of cyclohexanol.
ExxonMobil developed a process in which benzene is hydroalkylated to cyclohexylbenzene.
Cyclohexanone is oxidized to a hydroperoxide and then cleaved to phenol and cyclohexanone.
Therefore, this newer process without producing the acetone by-product appears attractive and is similar to the Cumene process as a hydroperoxide is formed and then decomposed to yield two key products.
Laboratory methods of Cyclohexanone:
Cyclohexanone can be prepared from cyclohexanol by oxidation with chromium trioxide (Jones oxidation).
An alternative method utilizes the safer and more readily available oxidant sodium hypochlorite.
Uses of Cyclohexanone:
The great majority of cyclohexanone is consumed in the production of precursors to Nylon 6,6 and Nylon 6.
About half of the world’s supply is converted to adipic acid, one of two precursors for nylon 6,6.
For this application, the KA oil (see above) is oxidized with nitric acid.
The other half of the cyclohexanone supply is converted to cyclohexanone oxime.
Laboratory reactions of Cyclohexanone:
In addition to the large scale reactions conducted in service of the polymer industry, many reactions have been developed for cyclohexanone.
In the presence of light, Cyclohexanone undergoes alpha-chlorination to give 2-chlorocyclohexanone.
Cyclohexanone forms a trimethylsilylenol ether upon treatment with trimethylsilylchloride in the presence of base.
Cyclohexanone also forms an enamine with pyrolidine.
Illicit use of Cyclohexanone:
Cyclohexanone has been used in the illicit production of phencyclidine and its analogs and as such is often subject to additional checks before purchase.
How is cyclohexanone made?
There are several methods of manufacturing cyclohexanone, one of which being the catalytic hydrogenation of phenol:
C6H5OH + 2 H2 → (CH2)5CO
Another method is via the catalytic air-oxidation of cyclohexane, typically in the presence of cobalt crystals:
C6H12 + O2 → (CH2)5CO + H2O
This reaction is one of the primary commercial bulk manufacturing methods, the other being the hydrogenation of benzene (in a closed system).
Other methods include the catalytic dehydrogenation of cyclohexanol:
C6H11OH → C6H11OH + H2
Worldwide, thousands of tonnes of cyclohexyl ketone are produced annually.
Demand for it is still growing, especially in China, and several new production plants have come on-line in the past few years in order to help meet this demand.
Boiling point: 155.6°C
Melting point: –16.4°C
Conversion factor: mg/m3 = 4.0 × ppm
Description of Cyclohexanone:
Cyclohexanone (pimelic ketone, ketohexamethylene, cyclohexyl ketone, ketocyclohexane) is an industrially important intermediate in the synthesis of materials such as nylon.
Cyclohexanone is an important intermediate for synthesizing fine chemicals and also regarded as a promising secondgeneration biofuel.
The dimers by the self-condensation of cyclohexanone include a pair of resonance structures of 2-(1-cyclohexenyl)cyclohexanone and 2-cyclohexylidenecyclohexanone, which can be readily dehydrogenated directly to o-phenylphenol (OPP).
General description of Cyclohexanone:
Cyclohexanone, a colorless liquid is a cyclic ketone.
Cyclohexanone is an important building block for the synthesis of a variety of organic compounds.
Majority of the cyclohexanone synthesized is utilized as an intermediate in the synthesis of nylon.
One of the methods reported for its synthesis is by the palladium catalyzed hydrogenation of phenol.
The kinetics of the oxidation reaction of cyclohexanone has been studied in a fused silica jet stirred reactor.
The Meerwein–Ponndorf–Verley reduction of cyclohexanone has been reported.
Molecular Weight: 98.14
Formula: C6H10O
Density: 0.947 g/mL at 25 °C
CAS No.: 108-94-1
Storage: 2 years -20°C liquid
Smiles: C1CCC(=O)CC1
We can provide customers with the purest and finest Cyclohexanone, anywhere and anytime.
-Proprietary production processes to ensure industry-leading quality and consistency
-Integrated Cyclohexanone production sites, resulting in the highest degree of reliability
-Continuous quality assurance
-State-of-the-art transportation options
-Continuous improvements and investments to secure world-class plant reliability and industry-leading quality
Chemical and physical properties of cyclohexanone:
Molecular Formula: C6H10O / (CH2)5CO
Synonyms: Ketohexamethylene, oxocyclohexane, sextone, pimelic ketone, pimelin ketone, cyclohexyl ketone, Hydrol-O, anone, CYC.
Cas Number: 108-94-1
Molecular Mass: 98.14 g/mol
Exact Mass: 98.073165 g/mol
Flashpoint: 111°F / 43.9
Boiling Point: 312.1 ° F / 155.6 at 760 mm Hg
Melting Point: 3 ° F/ -16.1 ° C
Vapour Pressure: 101.7° F at 10 mm Hg
Water Solubility: 50 to 100 mg/mL at 64° F
Density: 0.945 at 68 °F
Cyclohexanone is an industrially important intermediate in the synthesis of materials such as nylon, but preparing it efficiently through direct hydrogenation of phenol is hindered by over-reduction to cyclohexanol.
Here we report that a previously unappreciated combination of two common commercial catalysts―nanoparticulate palladium (supported on carbon, alumina, or NaY zeolite) and a Lewis acid such as AlCl3―synergistically promotes this reaction.
Conversion exceeding 99.9% was achieved with >99.9% selectivity within 7 hours at 1.0-megapascal hydrogen pressure and 50°C.
The reaction was accelerated at higher temperature or in a compressed CO2 solvent medium.
Preliminary kinetic and spectroscopic studies suggest that the Lewis acid sequentially enhances the hydrogenation of phenol to cyclohexanone and then inhibits further hydrogenation of the ketone.
General description of Cyclohexanone:
Cyclohexanone is a cyclic ketone with a minty odor.
Cyclohexanone is reported to be present in volatile flavor fraction of kiwi fruit pulp and acerola fruit.
Formula: C6H10O
Net Charge: 0
Average Mass: 98.14300
Monoisotopic Mass: 98.07316
InChI: InChI=1S/C6H10O/c7-6-4-2-1-3-5-6/h1-5H2
InChIKey: JHIVVAPYMSGYDF-UHFFFAOYSA-N
SMILES: O=C1CCCCC1
Cyclohexanol (CHOL) and cyclohexanone (CHON), precursors for caprolactam and adipic acid, are vital feedstock chemicals for the production of nylons.
In addition, CHOL serves as an emulsion stabilizer and a raw material for plasticizers, and CHON is widely used as a solvent for resins and paints.
Industrial preparations of CHOL and CHON entail oxidation of cyclohexane or hydrogenation of phenol.2 Alternatively, hydration of cyclohexene is developed to afford CHOL3 which can further be converted to CHON by oxidation.
During the above production processes, CHOL and CHON are inevitably obtained as mixtures, which are known as KA-oil.
Due to very close boiling points, mixed CHOL and CHON are energy-consuming to purify by distillation, thereby the development of alternative methods for separation is of significant importance.
Isolation of Cyclohexanone from Steam Distillate
Cyclohexanone is fairly soluble in water.
Dissolving inorganic salts such as potassium carbonate or sodium chloride in the aqueous layer will decrease the solubility of cyclohexanone such that it can be completely extracted with ether.
This process is known as “salting out.”
To salt out the cyclohexanone, add to the distillate 0.2 g of sodium chloride per milliliter of water present and swirl to dissolve the salt.
Then pour the mixture into a separatory funnel, rinse the flask with ether, add more ether to a total volume of 25-30 mL, shake, and draw off the water layer.
Then wash the ether layer with 25 mL of 10% sodium hydroxide solution to remove acetic acid, test a drop of the wash liquor to make sure it contains excess alkali, and draw off the aqueous layer.
Product Number: C0489
Purity / Analysis Method: >99.0%(GC)
Molecular Formula / Molecular Weight: C6H10O = 98.15
Physical State (20 deg.C): Liquid
CAS RN: 108-94-1
Reaxys Registry Number: 385735
PubChem Substance ID: 87565608
SDBS (AIST Spectral DB): 571
Merck Index (14): 2726
MDL Number: MFCD00001625
Cyclohexanone and benzoquinone are important chemicals in chemical and manufacturing industries.
The simultaneous production of cyclohexanone and benzoquinone by the reaction of phenol and water is an ideal route for the economical production of the two chemicals.
In principle, this can be achieved in an electrochemical reaction system that couples the cathodic reduction of phenol to cyclohexanone and the anodic oxidation of phenol to benzoquinone, which has not been realized.
Here, we report the first work on this integration strategy, where nitrogen-doped hierarchically porous carbon (NHPC)-supported NiPt and FeRu designed in this work are very efficient and selective cathode and anode catalysts, affording >99.9% selectivities to both cyclohexanone and benzoquinone.
The excellent electrocatalytic performance of the catalysts can be ascribed to the poor absorption capability of the NiPt alloy nanoparticles (NPs) for cyclohexanone and Fe single-atom decorated Ru NPs for benzoquinone, which avoids the excessive reduction and oxidation of the desired products.
The reaction pathway is proposed on the basis of control experiments, in which two phenol molecules react with one H2O molecule with 100% atom-efficiency.
In the scale-up experiment at the 1 g scale, NiPt/NHPC and FeRu/NHPC exhibit excellent durability and stability, which enables this integrated system to afford 645.3 mg of cyclohexanone and 691.7 mg of benzoquinone synchronously in an operating time of 90 h.
Specifications of Cyclohexanone:
Appearance: A clear colorless liquid
Purity (by GC): Min 99.5%
Refractive index (20°C; 589 nm): 1.450 – 1.451
Weight/ mL at 20°C: 0.945 – 0.947 g
Water (H2O): Max 0.2%
Non volatile matter: Max 0.02%
Acidity (as CH3COOH): Max 0.02%
Cyclohexane (C6H12): Max 0.001%
Cyclohexanol (C6H12O): Max 0.2%
Copper (Cu): Max 0.00005%
Iron (Fe): Max 0.0001%
Lead (Pb): Max 0.00005%
Synonyms:
anone; cyclohexyl ketone; pimelic ketone; ketohexamethylene
Other names:
oxocyclohexane, pimelic ketone, ketohexamethylene, cyclohexyl ketone, ketocyclohexane, hexanon, Hydrol-O, Sextone, K, Anone
SYNONYMS:
CYCLOHEXANONE
Cyclohexanone
cyclohexanone
Cyclohexyl ketone
Ketocyclohexane
Ketohexamethylene
Oxocyclohexane
CYCLOHEXANONE
108-94-1
Ketohexamethylene
Pimelic ketone
Sextone
Cyclohexyl ketone
Nadone
Anone
Anon
Cyclohexanon
Hytrol O
Hexanon
ketocyclohexane
oxocyclohexane
Pimelin ketone
Cykloheksanon
Cicloesanone
Cyclohexanone, homopolymer
Hytrolo
Cyclic ketone
RCRA waste number U057
Cyclohexanon [Dutch]
Caswell No. 270
NCI-C55005
Cicloesanone [Italian]
Cykloheksanon [Polish]
NSC 5711
UNII-5QOR3YM052
CCRIS 5897
MFCD00001625
9003-41-2
cyclohexyloxy
CHEMBL18850
5QOR3YM052
CHEBI:17854
cyclohexan-1-one
DSSTox_CID_359
DSSTox_RID_75537
DSSTox_GSID_20359
CYH
CAS-108-94-1
HSDB 186
EINECS 203-631-1
UN1915
RCRA waste no. U057
EPA Pesticide Chemical Code 025902
CYCLOHEXANONE POLYMER
cylcohexanone
cylohexanone
cyclo-hexanone
2-cyclohexanone
4-cyclohexanone
AI3-00041
Cyclohexanone,(S)
Cyclohexanon(dutch)
Cyclohexanone ACS grade
BDBM6
Cyclohexanone homopolymer
Cyclohexanone, 99.8%
ACMC-1BP9A
WLN: L6VTJ
bmse000405
EC 203-631-1
MLS002152896
BIDD:ER0292
Cyclohexanone, LR, >=99%
DTXSID6020359
Cyclohexanone (Industrial Grade)
Cyclohexanone, p.a., 99.0%
Cyclohexanone, AR, >=99.5%
NSC5711
Cyclohexanone, analytical standard
HMS3039C04
Cyclohexanone – Reagent Grade ACS
NSC-5711
ZINC4528575
Tox21_202121
Tox21_302750
s6236
SBB060074
STL183287
AKOS000119815
DB02060
MCULE-5664385838
UN 1915
Cyclohexanone, ACS reagent, >=99.0%
Cyclohexanone, ReagentPlus(R), 99.8%
NCGC00091786-01
NCGC00091786-02
NCGC00256489-01
NCGC00259670-01
SMR001224507
Cyclohexanone 5000 microg/mL in Methanol
Cyclohexanone, puriss., >=99.5% (GC)
Cyclohexanone, SAJ first grade, >=98.0%
DB-059799
Cyclohexanone, Selectophore(TM), >=99.5%
FT-0624193
FT-0699543
ST50214418
Y1320
Cyclohexanone [UN1915] [Flammable liquid]
Cyclohexanone, JIS special grade, >=99.0%
Cyclohexanone, Vetec(TM) reagent grade, 98%
2628-EP2269986A1
2628-EP2269990A1
2628-EP2269995A1
2628-EP2270113A1
2628-EP2272817A1
2628-EP2272825A2
2628-EP2272832A1
2628-EP2272849A1
2628-EP2272935A1
2628-EP2274983A1
2628-EP2275403A1
2628-EP2275407A1
2628-EP2275411A2
2628-EP2275469A1
2628-EP2277878A1
2628-EP2280005A1
2628-EP2280009A1
2628-EP2281810A1
2628-EP2281812A1
2628-EP2284148A1
2628-EP2284165A1
2628-EP2286915A2
2628-EP2287153A1
2628-EP2287159A1
2628-EP2287940A1
2628-EP2289868A1
2628-EP2289884A1
2628-EP2289893A1
2628-EP2289897A1
2628-EP2289965A1
2628-EP2292592A1
2628-EP2292593A2
2628-EP2292599A1
2628-EP2292606A1
2628-EP2295407A1
2628-EP2295438A1
2628-EP2298736A1
2628-EP2298763A1
2628-EP2298767A1
2628-EP2298828A1
2628-EP2299326A1
2628-EP2301918A1
2628-EP2301919A1
2628-EP2301924A1
2628-EP2301983A1
2628-EP2302003A1
2628-EP2305655A2
2628-EP2305658A1
2628-EP2305668A1
2628-EP2308838A1
2628-EP2308848A1
2628-EP2308851A1
2628-EP2308857A1
2628-EP2308858A1
2628-EP2308883A1
2628-EP2308926A1
2628-EP2309564A1
2628-EP2311807A1
2628-EP2311815A1
2628-EP2311816A1
2628-EP2311817A1
2628-EP2314558A1
2628-EP2314583A1
2628-EP2316824A1
2628-EP2316832A1
2628-EP2316833A1
2628-EP2316836A1
2628-EP2371805A1
2628-EP2377845A1
C00414
22788-EP2270011A1
22788-EP2272517A1
22788-EP2272817A1
22788-EP2272822A1
22788-EP2272832A1
22788-EP2272935A1
22788-EP2275398A1
22788-EP2275401A1
22788-EP2275409A1
22788-EP2275469A1
22788-EP2277867A2
22788-EP2280003A2
22788-EP2280009A1
22788-EP2280010A2
22788-EP2281817A1
22788-EP2287940A1
22788-EP2289887A2
22788-EP2289888A2
22788-EP2289895A1
22788-EP2289965A1
22788-EP2292592A1
22788-EP2292597A1
22788-EP2292606A1
22788-EP2292611A1
22788-EP2295414A1
22788-EP2295421A1
22788-EP2295422A2
22788-EP2295436A1
22788-EP2298731A1
22788-EP2298746A1
22788-EP2298750A1
22788-EP2298767A1
22788-EP2298772A1
22788-EP2298774A1
22788-EP2298828A1
22788-EP2301921A1
22788-EP2301926A1
22788-EP2301983A1
22788-EP2305250A1
22788-EP2305633A1
22788-EP2305651A1
22788-EP2308510A1
22788-EP2308562A2
22788-EP2308839A1
22788-EP2308854A1
22788-EP2311810A1
22788-EP2313397A1
22788-EP2313398A1
22788-EP2314575A1
22788-EP2314583A1
22788-EP2314587A1
22788-EP2315502A1
22788-EP2371810A1
78030-EP2272846A1
78030-EP2275422A1
78030-EP2277868A1
78030-EP2277869A1
78030-EP2277870A1
78030-EP2287158A1
78030-EP2292608A1
78030-EP2298076A1
78030-EP2298077A1
78030-EP2298762A2
78030-EP2301353A1
78030-EP2305031A1
78030-EP2305033A1
78030-EP2305034A1
78030-EP2305035A1
78030-EP2308866A1
78030-EP2371823A1
78030-EP2374791A1
Cyclohexanone, puriss. p.a., >=99.5% (GC)
Q409178
J-520160
F0001-0185
Z955123528